Esta tecnología ha sido estudiada desde los años 60, pero no ha tenido éxito debido a los propergoles químicos utilizados o a las formas en que se mezclan.
El grupo de Ahmed lo hizo funcionar equilibrando cuidadosamente la tasa de entrada de los propergoles, hidrógeno y oxígeno, liberados en el interior del motor.
“Tenemos que ajustar el tamaño de los chorros que liberan los propergoles para mejorar la mezcla de hidrógeno-oxígeno”, dijo Ahmed. “Así, cuando la explosión rotativa se encuentra con esta mezcla fresca, todavía se mantiene. Si la mezcla estuviese ligeramente fuera de lo previsto, tendería a deflagrarse, o a quemarse lentamente en lugar de detonar”.
El equipo de Ahmed también tuvo que obtener pruebas del funcionamiento correcto de su ingenio. Lo hicieron inyectando un trazador en el flujo de combustible de hidrógeno y cuantificando las ondas de detonación usando una cámara de alta velocidad.
“Necesitas el trazador para ver realmente esa explosión que está ocurriendo dentro y rastrear su movimiento”, dijo. “El desarrollo de este método para caracterizar la dinámica de la onda de detonación es otra contribución de este artículo”.
William Hargus, líder del programa de motores cohetes de detonación rotativa del Laboratorio de Investigación de la Fuerza Aérea, es co-autor del estudio y comenzó a trabajar con Ahmed en el proyecto el verano pasado.